St. Nicholas CE Primary Academy

Progression in Reasoning and Problem Solving

Progression in Reasoning and Problem Solving at St. Nicholas CE Primary Academy

The aims of the National Curriculum are to ensure that all children:

- become **fluent** in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils have conceptual understanding and apply their knowledge rapidly and accurately to problems.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
- can **solve problems** by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

This progression map is written to help teachers to meet these aims, and in particular to promote mathematical reasoning in children, to develop an ability to convince others using mathematical arguments, and to engage with non routine problems. Routine problems, as in closed worded problems, are included in the National Curriculum programmes of study and so are not written into this progression map.

The progression map presents four different types of mathematical reasoning, although these are linked and often overlap. However, teachers can see the progression in each types of reasoning.

<u>Mathematical reasoning and problem solving are best embedded in all lessons</u>, and the learning outcomes and activities suggested here are recommended as part of everyday teaching, rather than as discrete problem solving lessons.

When teaching children to convince others and engage with ideas of proof, teachers can:

- use ideas across the mathematics curriculum, to ask children to convince others of facts and ideas. In particular they may use resources such as dienes and place value counters to show how they have reasoned about number. Some examples are listed in this progression map.
- ask children to discuss general statements and argue whether these are true or not true. To show something is true they might first look at some examples to convince themselves or others but as they move through Key Stage 2, they can present an argument based on the properties of numbers and shape, for example arguing that double an even number is even because an even number is a multiple of 2, and so that double this would also be a multiple of two. They might refer to numicon as an example. When they argue that a statement is not true they need to find one example which contradicts it, called disproof by counter example. They might decide when some statements are always or sometimes true.
- Use the finding rules and describing patterns investigations (see the PNS link) to ask children to generate general statements and then explain why they are true. Teachers might also refer to the CCCU Algebra progression map for more activities.

Further support for guidance in reasoning can be found on:

https://www.ncetm.org.uk/resources/44672

Further activities can be found on:

www.nrich.maths.org

PNS materials can be found on for example:

http://www.edu.dudley.gov.uk/primary/Strategymaterials/pnsdocs.htm (bottom of page)

	Working systematically Finding all possibilities	Generalising and conjecturing	Thinking strategically	Reasoning, convincing and
	Enumerating possibilities for combinations	Explaining and justifying	Interpreting	proof
		Finding rules and describing patterns	information	Considering general
			Solving logic problems	statements:
				"Convince yourself,
				convince your friend, and
				convince your enemy".
Year R	Example learning outcomes:	Example learning outcomes:	Example learning	Activities across the
	Talk about things being in order.	Talk about, recognise and recreate simple	outcomes:	mathematics curriculum:
	Identify same and different.	patterns.	Recognise similarities	Explain why an answer is
	Use ordinal vocabulary, 1st 2nd etc	Identify same and different.	and differences.	correct
	Sort objects using and explaining criteria	Describe solutions to practical problems, drawing	Sort objects using	for example:
	Explain what they are thinking and doing.	on experience, talking about their own ideas,	several criteria and	 when answering simple
	Represent work with objects or pictures and discuss it,	methods and choices	sort to their own	problems involving addition
	talk about ways to check that there are no omissions or	Sort objects using criteria and explaining	criteria, justifying their	and subtraction in their play
	repetitions	Make a prediction about the next part of the	choices.	why they have used
	Example activities:	pattern.	Say why an item does	particular shapes in junk
	Sorting activities	Example activities:	not belong into a set.	modelling
	Billy the clown wears a coloured nose and bowtie for his	How many smarties in a pack?	Guess the criteria	why certain shapes fit into
	show. He has a red nose and a blue nose. Make pictures	How many of each colour? Will it be the same for	being used to sort	a jigsaw
	of Billy with his noses. How many different pictures? He	the next pack?	objects.	explain how they work out
	has a spotted bowtie and a striped bow tie. Make pictures	Which colour is there more of?	Explain what they are	doubles and halves using
	of Billy with his bow ties. How many different pictures?	 Find different shaped sponges. Which one holds 	thinking and doing.	resources
	Can you make different outfits for Billy? Use a nose and a	the most water?	Example activities:	• etc
	bow tie. How many different outfits?	Stand up 10 skittles. Have one go at knocking	 How is your shoe 	Link to persuasive language
	How many different ice creams can you make if you	some down with a soft ball or bean bag. Record	different to your	
	choose one scoop of either chocolate or strawberry ice	how many are still standing and how many you	neighbour's?	
	cream? Now try with a plain or chocolate cone.	knock down. Can you guess how many knocked	 PNS Logic problems: 	
	A lady bird has six spots. She can have some spots on the	down before you count them?	Shoes, nature sort	
	left and some on the right. Draw as many different ways	 Copying, making and talking 	 Solving everyday 	
	of arranging the spots as you can.	about patterns with toys, bricks, beads etc	problems about	
	Put ten things into 2 paper bags. Can you do it in a	 PNS Finding rules and describing patterns: 	classroom tasks e.g. do	
	different way?	Teddy's presents	we have enough	
	• PNS Finding all possibilities: In the café, working in sand,		apples for snack time?	
	railway track			

	Working systematically Finding all possibilities	Generalising and conjecturing	Thinking strategically	Reasoning, convincing and proof
	Enumerating possibilities for combinations	Explaining and justifying	Interpreting	Considering general statements:
		Finding rules and describing	information	"Convince yourself, convince your friend,
		patterns	Solving logic problems	and convince your enemy".
Year 1	Example learning outcomes:	Example learning outcomes:	Example learning outcomes:	Activities across the mathematics
	Identify same and different.	Describe and recreate simple	Use one piece of	curriculum:
	Record different answers in a systematic way, identifying why	patterns involving numbers, shapes	information and see what	Explain why an answer is correct for
	this is important and explaining how they have done this	or items.	effect it has.	example:
	Explain how answers differ.	Decide whether examples satisfy	Check that the answer	showing how they know the multiples of
	Recognise that there is sometimes more than one possible	given conditions.	meets all of the criteria.	two, five or ten using resources such as
	answer to a problem.	Describe ways of solving puzzles	Solve a problem using given	numicon or a number line or square
	Give examples that match a given statement and those that	and problems, explaining choices	facts.	why an number sentence is correct or
	don't.	and decisions.	Sort objects, number or	incorrect using known facts or resources,
	Talk about patterns in their lists / results.	Represent findings orally, using	shapes and explain why an	why adding or subtracting zero has no
	Example activities:	pictures or practically.	example does or does not fit	effect,
	How many different ice creams can you make if you choose	Make a prediction about the next	into a group	how they know what half or quarter of a
	one scoop of either chocolate or strawberry ice cream with a	part of the pattern and explain	Example activities:	quantity object or shape is
	plain or chocolate cone?	why.	Shape or number Sudoku	• etc
	Holly and Ivy are two of Santa's elves. Holly wears a red hat	Recognise a simple relationship	2x2, 3x3 grids	Example activities:
	and a red tunic. Ivy wears a green hat and a green tunic. In	Make predictions and conjectures	Give me an example of	Convince a friend or enemy whether
	the morning they get dressed in the dark. How many ways can	Example activities:	and another eg give me an	general statements are true or false, for
	Holly get dressed?	Whose pencil case holds the	example of an even	example:
	Make a tower of 6 cubes (or a snake or a train) using 2	most?	number, and another, a	All triangles have 3 sides
	colours. How many can you make?	Whose school bag holds the	pair of numbers with a sum	When you add two numbers, you can
	Put ten things into 2 paper bags. How many different ways	most?	of ten , and anotheretc	change the order of the numbers and the
	can you do it?	How many ways can you make a	PNS Logic problems: Toys,	answer will be the same
	If In Teddy Town, teddies are either red or yellow and they	ten using Cuisenaire rods?	Granny's garden	You can make 4 different two digit
	live in red or yellow houses. There are 4 teddies - 2 red and 2	PNS Finding rules and describing	• Nrich	numbers with the digits 2 and 3
	yellow, and 4 houses - 2 red and 2 yellow. Can you match	patterns: Teddy' presents	http://nrich.maths.org/9036	When you add 10 to a number the units
	each teddy to a house so that the four pairs are all different	• Nrich		digit stays the same.
	from each other?	http://nrich.maths.org/9009		3 + 4 = 4 + 3 (Commutative law)
	You buy a lollypop for 6p and give the exact money, how	http://nrich.maths.org/9014		Odd one out: for example with 2D and 3D
	many different ways can you pay?	http://nrich.maths.org/8972		shape
	• List numbers which total 10			• Show me that is the same as Eg
	Billy the clown wears a coloured nose and bowtie for his			show me that 3 + 4 = 4 + 3
	show. He has a red nose and a blue nose, and a spotted			• Explain why the general patterns or rules
	bowtie and a striped bow tie. How many different outfits can			they found as part of 'finding rules and
	he appear in?			describing patterns' are true.
	PNS Finding all possibilities: Lollipops, down the path Naish later (Variable paths and (770))			• http://nrich.maths.org/9016
	Nrich http://nrich.maths.org/9798			(Link to persuasive language)

	Working systematically Finding	Generalising and conjecturing	Thinking	Reasoning, convincing and proof
	all possibilities	Explaining and justifying	strategically	Considering general statements:
	Enumerating possibilities for	Finding rules and describing patterns	Interpreting	"Convince yourself, convince your friend, and convince
	combinations		information	your enemy".
			Solving logic	
			problems	
Year 2	Example learning outcomes:	Example learning outcomes:	Example learning	Activities across the mathematics curriculum:
	Use a systematic way to solve a	Identify patterns and relationships involving	outcomes:	Explain why an answer is correct, for example:
	problem.	numbers or shapes, and use these to solve	Solve a problem by	use known facts or inverse operations or place value or
	Create a systematic list of	problems.	identifying given	resources such as dienes or numicon or a number line to
	possibilities.	Talk about how a pattern will continue and make	facts and	show why a number sentence is correct or incorrect,
	Talk about why it is a complete list	predictions.	prioritising them.	• use resources to show how they know how to find a
	and how they have been systematic.	Talk about the pattern generally, discussing a	Identify necessary	fraction of a quantity or shape or object and that $2/4 = \frac{1}{2}$
	Look for patterns and possible	general relationship or statement in words	information for	how they have compared and ordered items by
	general statements or relationships	Describe and explain methods, choices and	solving problems	measuring
	Example activities;:	solutions to puzzles and problems.	Confirm that they	why different combinations of coins might have the
	• If three bears, a red bear, a yellow	Example activities:	have found the	same value
	bear and a green bear, play each	 Make a family of multi-link animals, eg a baby 	correct solution by	why times expressed in different ways may be the same
	other at table tennis, each taking it in	dog:	checking in another	how they solved problems using pictograms, tallies or
	turns to play another bear, how	How many cubes? Make the next one in the dog	way. Use recording	block diagrams
	many games will there be?	family:	to help them make	• etc
	How many different football strips	How many cubes?	sense of the	Example activities:
	could you make choosing from 2 T	Make the next members of the dog family	information given	Explain why the general patterns or rules they found as
	shirts and 2 pairs of shorts?	How many cubes for each one?	and to find missing	part of 'finding rules and describing patterns' are true.
	How many different numbers can	How many cubes for the 100th member?	information	Convince a friend or enemy whether these statements
	you make with the digits 1, 2 and 3?	Can you see a patterns? How can you work out	Example activities:	are true or false. Explain their thinking, showing why a
	 Arrange 3 different coloured 	how many cubes for any dog in the family?	Give me an	general statement may be true or not true with the use of
	smarties in different ways	 If you fill your pencil case with pennies how rich 	example of and	particular examples. For example:
	• List pairs of number which have a	are you? What about 2pence pieces? 10 pence	another eg give	When you subtract ten from a number, the units digit
	units digit of 3 when added together	pieces?	me an example of a	stays the same
	 List pairs of numbers with a 	How high is your chair? Your table? Your door?	pair of numbers	You can add 9 to a number by adding 10 and subtracting 1
	difference of 3	How high would they need to be for a giant child	with a difference of	All even numbers end in 0, 2, 4, 6, 8
	• Use 7 cubes - 5 of them of one	double your height?	2, and another, a	A cube has 9 faces
	colour and 2 of another colour.	• If a bank only has 2p and 5p coins, what amounts	multiple of 3, and	If you have 3 digits, and use each one exactly once in a
	These 7 have all to be joined	can you make?	anotheretc	three digit number, you can make 9 different three digit
	together. The five that are of one	 Make multi-link towers of the same size and put 	Shape or number	numbers
	colour must all touch the table that	them on the corners of a square. How many cubes	Sudoku 3x3, 4x4	Etc
	you are working on. The two that are	did you use? Make your towers a different size but	grids	Odd one out activities eg looking at three numbers such
	of a different colour must NOT touch	keep them all the same. How many now?	PNS Logic	as 2, 15, 30, decide which is the odd one out and convince
	the table. How many different	Try with a triangle or a pentagon.	problems: Shape	your friend
	shapes can you find?	 PNS Finding rules and describing patterns: Hop 	puzzler, sandwich	Same and different activities eg 2D and 3D shapes
	PNS Finding all possibilities: Maisie	scotch grid	shop	• Show me that is the same as Eg show me that 2 lots

and the maze, line of symmetry	• http://nrich.maths.org/9009	Nrich	of 5 is the same as 5 lots of 2
Nrich http://nrich.maths.org/9798	http://nrich.maths.org/9014	http://nrich.maths.	Nrich http://nrich.maths.org/9016
	http://nrich.maths.org/8972	org/9036	(Link to persuasive language)

	Working systematically Finding all possibilities Enumerating possibilities for combinations	Generalising and conjecturing Explaining and justifying Finding rules and describing patterns	Thinking strategically Interpreting information Solving logic problems	Reasoning, convincing and proof Considering general statements: "Convince yourself, convince your friend, and convince your enemy".
Year 3	Example learning outcomes:	Example learning outcomes:	Example learning outcomes;	Activities across the mathematics curriculum:
l car 5	Prove that they have found all	Generate patterns by considering examples	Solve a puzzle by identifying the	Explain why an answer is correct, for example:
	possible answers by being	systematically in an investigation	facts and prioritising them.	use known facts or inverse operations or place value or
	systematic.	Make predictions based on patterns in results	Use one piece of information in	resources such as dienes or a number line to show why a
	Use patterns to make predictions	in an investigation	the problem and see what	number sentence is correct or incorrect,
	about the number of	Make general statements and discuss	effect it has.	Use resources such as dienes and place value counters
	combinations	relationships using everyday language	Identify necessary information	to show how they used column methods for addition
	Use patterns to talk about	Describe and explain methods, choices and	for solving problems	and subtraction, demonstrating that ten units is one ten
	general statements or	solutions to puzzles and problems.	Check that their solution meets	and ten tens is one hundred
	relationships	Continue more complex patterns.	all the criteria.	Use resources to show how they know what one tenth
	Example activities:	Example activities:	Example activities:	of a number is
	Billy the clown wears a	Draw a 2x2 square on a 100 square. Add the	Give me an example of and	Use resources or pictures to show how they know what
	coloured nose and bowtie for his	diagonals. What do you notice? Will it always	another eg give me an	a fraction of a number is and to show equivalent
	show. He has a red nose and a	be true?	example of a fraction equal to	fractions
	blue nose, and a spotted bowtie	Try different shaped squares/rectangles.	1/2, and another, a pair of	How they know what the perimeter of a shape is
	and a striped bow tie. How many	Make a net for a cube. How many different	numbers which total 100, and	Why times expressed in different ways may be the
	different outfits can he appear	cube nets can you find?	anotheretc	same
	in?	Which numbers can you make using only four	• Shape or number Sudoku, 3x3	How they use conversions between metric units of
	How many outfits if he buys a	3s and any combinations of operations?	grids and sets of 3x3 grids eg 9	measurements to solve problems (eg m,, cm, mm, kg, g, l
	new nose and bow tie?	PNS Finding rules and describing patterns:	x9	ml)
	List trios of numbers which total 101	Hop scotch grid, Party bags, L shaped models	PNS Logic problems: coloured shapes, Rebecca's school day	 Why a full turn is the same as four quarter turns etc How they solved problems using bar charts, pictograms
	List numbers which leave a	http://nrich.maths.org/8915	Nrich	and tables
	remainder when divided by 5	http://nrich.maths.org/8917	http://nrich.maths.org/8944	• etc
	Find the shapes which straight	http://nrich.maths.org/8909		Example activities
	sides which can be found by			Convince a friend or enemy whether these statements
	cutting a square in to two pieces			are true or false. Explain their thinking, showing why a
	 PNS Finding all possibilities: 			general statement may be true or not true with the use
	fireworks, Susie the snake			of particular examples. For example:
	Nrich			Any odd number is one more than an even number
	http://nrich.maths.org/9803			Any even number can be made as the sum of two odd
				numbers
				The multiples of 4 are always even
				etc
				Odd one out activities
				Same and Different Activities
				• Show me that is the same as Eg show me that a
				litre is the same as two lots of 500 ml

	 Explain why the general patterns or rules they found as part of 'finding rules and describing patterns' are true. Nrich http://nrich.maths.org/8921
	(Link to persuasive language)

	Working systematically	Generalising and	Thinking strategically	Reasoning, convincing and proof
	Finding all possibilities	conjecturing	Interpreting	Considering general statements:
	Enumerating possibilities	Explaining and justifying	information	"Convince yourself, convince your friend, and convince your enemy".
	for combinations	Finding rules and	Solving logic problems	
		describing patterns		
Year 4	Example learning	Example learning	Example learning	Activities across the mathematics curriculum:
	outcomes:	outcomes:	outcomes:	Explain why an answer is correct, for example:
	Solve a problem by	Report solutions to puzzles	Solve a problem by	• use known facts or inverse operations or place value or resources such as dienes or a
	checking possible	and problems, giving	identifying and prioritising	number line to show why a number sentence is correct or incorrect
	solutions against a given	explanations and reasoning	given facts and	Use resources such as dienes and place value counters to show how they used column
	criteria.	orally and in writing, using	information, checking	methods for addition and subtraction,
	List possible answers in a	diagrams and symbols	possible solutions against	Explain how they solved word problems: choosing operations and disregarding
	systematic way efficiently.	Use patterns to make	given criteria.	unnecessary information and checking their answers
	Justify the approach as	predictions and general	Identify necessary	Explain what they know about multiplying by 0 and 1, and dividing by 1
	being systematic.	statements.	information for solving	Use an array to explain how to find factors of a number, and how to multiply two or
	Prove that all items are	Talk about the justification	problems	three digit number by a one digit number using the distributive law
	listed	for the general statement.	Solve a problem by	Use resources or diagrams to show equivalent fractions and how to find a non unit
	Make a general statement	Describe and continue	identifying and prioritising	fraction of a quantity or shape
	and provide a convincing	more complex patterns. Draw conclusions from	given facts and	• how they use conversions between metric units of measurements to solve problems (eg
	argument that it is true.	investigations and explain	information.	km, m, hour, minute)
	Use a pattern to predict	their reasoning	Example activities:	how they found the area of a shape
	the next number of	Example activities:	Give me an example of	why analogue and digital, and 12 and 24 hour times might be the same
	combinations	How many squares on a	and another eg give me	• etc
	Example activities:	chess board?	an example of a rectangle	Example activities:
	How many different ice	Add three consecutive	with perimeter of 24cm,	Convince a friend or enemy whether general statements are true or false. Explain their
	creams can you make if	numbers. What do you	and another, three	thinking, showing why a general statement may be true or not true with the use of
	you choose one scoop of	notice about the answer?	consecutive numbers with	particular examples and mathematical patterns and properties. For example:
	either chocolate or		an odd total, and	Any odd number is double a number add 1
	strawberry ice cream with	Now try adding 5, 7, 9 consecutive numbers.	anotheretc	If you multiply a number by 10 the digits move one place to the left
	a plain or chocolate cone?		• Think of a number	The number of lines of reflective symmetry in a regular polygon is equal to the number of
	Add in other flavours of	• Find the number of	Double it, add 15 subtract	sides of the polygon
	ice cream, different types	vertices, faces and edges	3, halve it, take away the	The sum of three odd numbers is odd
	of cone, and then chocolate or toffee sauce	on some 3D shapes. Do you notice a pattern? Is	number you first thought	Odd one out activities Same and different activities for example with 3D and 3D shapes.
		•	of. Now I will read your	• Same and different activities for example with 2D and 3D shapes
	on top.	there a separate pattern for prisms and pyramids?	mind, the answer is 6!	• Show me that is the same as Eg show me that ¼ of 24 is 6
	List numbers which leave remainder of 1 when	PNS Finding rules and	Why does it work?	Explain why odd numbers added to odd numbers have even totals etc Explain why the general patterns or rules they found as part of 'finding rules and
	a remainder of 1 when	describing patterns: Party	Make up your own	Explain why the general patterns or rules they found as part of 'finding rules and describing patterns' are true.
	divided by 7	bags, L shaped models	PNS Logic problems: change puzzle, howe and	describing patterns' are true.
	PNS Finding all possibilities: shoop dog	Nrich	shape puzzle, boys and	Nrich http://prich.maths.org/8031
	possibilities: sheep dog	http://nrich.maths.org/89	girls • Nrich	http://nrich.maths.org/8921 (Link to persuasive language)
	trails, 3 digits	15		(LITIK to persuasive language)
	Nrich	10	http://nrich.maths.org/89	

http://nrich.maths.org/98	http://nrich.maths.org/89	44	
<u>03</u>	<u>17</u>		
	http://nrich.maths.org/89		
	<u>09</u>		

	T 222 22 22 22 22	T	I	1
	Working systematically Finding all	Generalising and conjecturing	Thinking strategically	Reasoning, convincing and proof
	possibilities	Explaining and justifying	Interpreting	Considering general statements:
	Enumerating possibilities for	Finding rules and describing patterns	information	"Convince yourself, convince your friend, and
	combinations		Solving logic problems	convince your enemy".
Year 5	Example learning outcomes:	Example learning outcomes:	Example learning outcomes:	Explain why an answer is correct, for example:
	Find all possibilities by working	Generate patterns through systematic	Use one piece of information in	use known facts or inverse operations or place value or
	systematically.	examples in an investigation	more complex problems and	resources such as dienes or a number line to show why a
	Prove all possibilities are listed	identify and describe patterns using	see what effect it has.	number sentence is correct or incorrect
	Recognise when reasoning is systematic and when it is not.	mathematical language	Identify necessary information	Use resources such as dienes and place value counters to show how they used column methods for addition and
	Identify a pattern to make a prediction of	Accurately predict a later term in a pattern	for solving problems	subtraction,
	the number of possibilities.	or sequence	Check that the answer meets	Use an array to show the distributive law and use this to
	Make a general statement and provide a	Use a pattern to suggest and test general	the criteria.	explain their written methods for long multiplication
	convincing argument and apply this to	statements.	Choose and use a recording	Explain how they solved word problems: choosing
	other situations with similar or more	Provide a convincing argument for the	system to organise the given	operations and disregarding unnecessary information and
	combinations.	general statement.	information independently.	checking their answers
	Example activities:	Draw conclusions from investigations and	Use appropriate language that	Explain common factors and multiples using an array,
	Billy the clown wears a coloured nose	explain their reasoning using words,	is associated with this type of	number line or resources
	and bowtie for his show. He has a red nose	symbols or diagrams as appropriate	logic problem, e.g. 'If this	Prove whether a number is prime or not using an array or
	and a blue nose, and a spotted bowtie and	Example activities:	then this will change'	resources or known facts
	a striped bow tie. How many different	The Tower of Hanoi	Example activities:	Use resources or diagrams to show equivalent fractions and
	outfits can he appear in?	Move all the discs to the right hand tower.	Give me an example of and	how to add and subtract fractions with denominators which
	How many outfits if he buys a new nose and bow tie?	Only move one disc at a time.	another eg give me an	are the same or multiples of the same number • how they use conversions between metric units and
	What about if he decides to wear a hat as	Never put a large disc on a smaller one.	example of two fractions with a	between metric and imperial units of measurements to solve
	well and buys a yellow and an orange hat	What is the smallest number of moves? Try	total of 2, and another, a 3D	problems
	too?	different numbers of	shape with at least two	how they use facts about angles at a point or making a
	Shoes too?		trangular faces , and	straight line to solve problems
	List the factors of for example 48, how do	different sized disks.	anotheretc	how they solve problems using line graphs and tables
	you know you have them all?	• If you have 3 towns, and each one has one	Andrea, Peter, Debra and Simon	• etc
	List the square numbers between 50 and	road to the others, how many roads?	are each wearing one of black,	Example activities:
	500	How many roads for 4, 5, 6, any number of	red, yellow and green T-shirts.	Convince a friend or enemy whether these general are true
	Place each of the numbers 1 to 5 in a V	towns?	Use the following clues to find	or false or sometimes true. Explain their thinking, with the
	shape so that the two arms of the V have	Explore the digit roots of numbers. To find	out which colour shirt each	use of particular examples and mathematical patterns and
	the same total. How many different	the digit root, add the digits together. If		properties. For example: A multiple of 6 is a multiple of 2 and 3
	possibilities are there? What do you notice about all the solutions you find? Can you	your total has more than one digit root,	person is wearing	The digits of multiples of nine add up to 9
	explain what you see? Can you convince	continue to add the digits together. When	The red shirt is worn by one of	The product of two consecutive numbers is even
	someone that you have all the solutions?	your total has one digit, this is the digit root.	the boys	Angles on a straight line add up to 180 degrees
	What happens if we use the numbers from	What do you notice? What are the digit	Andrea and the girl who always	Odd one out activities eg 2D and 3D shape
	2 to 6? From 12 to 16? From 37 to 41?	roots of the multiples of 3?	wears black are in different	Same and different activities eg 2D and 3D shape
	From 103 to 107? What can you discover	PNS Finding rules and describing patterns:	schools	• Show me that is the same as Eg show me that 1/5 of 10
	about a V that has arms of length 4 using	candle problem, sequence of models	Simon's shirt colour has the	is the same as ½ of 4
	the numbers 1-7?	Nrich	same number of letters as his	Show me why adding consecutive odd number from 1
	PNS Finding all possibilities: ice creams,	http://nrich.maths.org/8915	name	makes square numbers eg $1 + 3 + 5 = 9$ (picture proof)
	treasure hunt	http://nrich.maths.org/8917	PNS Logic problems:	Explain why the general patterns or rules they found as part
	Nrich			of 'finding rules and describing patterns' are true.

Ī	http://nrich.maths.org/9803	http://nrich.maths.org/8909	nicknames, tea for two	Nrich
			Nrich	http://nrich.maths.org/8921
			http://nrich.maths.org/8944	(Link to persuasive language)

	ha/ - 1 *	Concreticion and	Thinking streets size III.	Describe continued and areas
	Working	Generalising and	Thinking strategically	Reasoning, convincing and proof
	systematically	conjecturing	Interpreting information	Considering general statements:
	Finding all	Explaining and justifying	Solving logic problems	"Convince yourself, convince your friend, and convince your enemy".
	possibilities	Finding rules and describing		
	Enumerating	patterns		
	possibilities for			
	combinations			
Year 6	Example learning	Example learning outcomes:	Example learning outcomes:	Activities across the mathematics curriculum:
	outcomes:	Construct and use a general	Identify necessary information for	Explain why an answer is correct, using concise argument, involving symbols,
	Identify a pattern to	statement in words then	solving problems	mathematical language, graphs or diagrams. For example:
	make a prediction of	symbols (e.g. the cost of c	Prioritise and use given facts to solve	• use known facts or inverse operations or place value to show why a number
	the number of	pens at 15 pence each is 15c	and check complex logic problems.	sentence is correct or incorrect
	possibilities.	pence).	Ask 'What if ?' questions.	Use resources such as dienes and place value counters to show how they used
	Make a general	Draw conclusions from	Recognise the effect of extensions	column methods for addition and subtraction,
	statement with a	investigations and explain	such as 'What if?' questions.	Use an array to show the distributive law and use this to explain long
	convincing argument	their reasoning	Create their own criteria for solving a	multiplication
	and apply this to	Express the general	logic problem in the context of a	• Explain how they perform long and short division, using resources such as place
	other situations with	statement from an	solved problem	value counters
	similar or more	investigation using	Refine and extend problems to	Explain how they solved word problems: choosing operations and disregarding
	combinations.	mathematical language,	generate fuller solutions	unnecessary information and checking their answers
	Express the general	symbols and sometimes	Example activities:	Use resources or diagrams to show equivalent fractions and how to order, add,
	statement from an	with algebra.	Give me an example of and	subtract and multiply fractions with different denominators and divide fractions
	investigation using	Example activities:	another eg give me an example of a	by whole numbers
	mathematical	How many handshakes	fractions equivalent to 3/4, and	Explain how they solve ratio and proportion problems, perhaps using the bar
	language, symbols	take place if 30 people in a	another, a fraction smaller than	method
	and sometimes with	room shake hands with each	1/10 , and anotheretc	Explain when they can use the formulae for area and volume of shapes
	algebra.	other exactly once?	Crossing the bridge	How to generate number sequences, and the rule for sequences they have
	Example activities:	Make a 3x3x3 cube out of	Four friends need to cross a bridge.	generated
	 How many ways 	27 small cubes. Imagine	They start on the same side of the	How they express missing number problems algebraically
	can three children	dipping it into paint. How	bridge. A maximum of two people can	How they use conversions between metric units (miles and km) and between
	line up for assembly?	many small cubes have: 3	cross at any time. It is night and they	metric and imperial units of measurements to solve problems
	Four children?	faces painted? 2 faces	have just one lamp. People that cross	How they use facts about angles in a shape, at a point or vertically opposite to
	Ten children?	painted? 1 face painted? O	the bridge must carry the lamp to see	solve problems
	 List fractions with 	faces painted?	the way. A pair must walk together at	How they solve problems using pie charts and line graphs, and calculate and
	the same value as	Investigate for 1x1x1, 2x2x2	the rate of the slower person:	interpret mean
	0.01	and other sized cubes	Rachel: - takes 1 minute to cross	Example activities:
	• List sets of three	Investigating regions:	Ben: - takes 2 minutes to cross	Convince a friend or an enemy that general statements are always, sometimes
	numbers with a	Draw a circle and put two	George: - takes 7 minutes to cross	or never true. If never true, disprove by counter example. Use particular
	mean of 6	dots anywhere on the	Yvonne: - takes 10 minutes to cross	examples but recognise that arguments should be based on general
	• List primes	circumference. Join these up	The second fastest solution gets the	mathematical patterns and properties. For example:
	between 50 and 70	with straight lines and count	friends across in 21 minutes. The	If you add three consecutive numbers the sum is three times the middle number
	If the final score at	how many regions you	fastest takes 17 minutes. Can you work	Multiplying does not always make the answer larger

the end of a hockey
match was 4,2, what
could the score be at
half time?
 PNS Finding all
possibilities: King
Arnold, 4 by 4
• Nrich

g/9803

http://nrich.maths.or

make. Try other number of dots.

- Which numbers have odd totals of factors?
- PNS Finding rules and describing patterns: candle problem, sequence of models
- Nrich http://nrich.maths.org/8915 http://nrich.maths.org/8917 http://nrich.maths.org/8909

out how it is done?

- PNS Logic problems: Albert square, house points
- Nrich

http://nrich.maths.org/8944

• Murder mystery

https://www.ncetm.org.uk/resources/20330

Dividing a whole number by half makes the answer twice as big Rectangles always have two diagonals which meet at right angles

- Odd one out activities eg 2D and 3D shape
- Same and different activities: eg 2D and 3D shapes
- \bullet Show me that ... is the same as.... Eg show me that 30% of 60 is the same as 60% of 30
- Explain why odd numbers multiplied by even numbers are odd etc
- Explain why opposite angles are equivalent
- Explain why the general patterns or rules they found as part of 'finding rules and describing patterns' are true.

Nrich

http://nrich.maths.org/8921

(Link to persuasive language)